

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 17.03.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let \mathcal{H} be a Hilbert space. Let V any closed subspace of \mathcal{H} ; recall the definition of V^\perp as

$$V^\perp := \{f \in \mathcal{H} \mid \langle g, f \rangle = 0 \ \forall g \in V\}. \quad (1)$$

We saw in class that the Hilbert space \mathcal{H} can be decomposed as $\mathcal{H} = V \oplus V^\perp$, meaning that $V \cap V^\perp = \{0\}$ and that for any non-zero $f \in \mathcal{H}$ there exists a unique element $f_V \in V$ such that $f - f_V \in V^\perp$. Define $P_V f := f_V$; from the uniqueness of f_V this is a well defined linear mapping.

- a** Prove that $P_V^2 = P_V = P_V^*$.
- b** Use **a** to prove that P_V is bounded and if $V \neq \{0\}$ then $\|P_V\| = 1$.
- c** Prove that if V_1 and V_2 are two closed subspaces of \mathcal{H} then¹

$$V_1 \perp V_2 \iff P_{V_1} P_{V_2} = 0. \quad (2)$$

Exercise 2

Let $\phi(t)$ and $\psi(t)$ differentiable functions on the Hilbert space \mathcal{H} , meaning that the limit

$$\frac{d\phi}{dt}(t) := \lim_{h \rightarrow 0} \frac{\phi(t+h) - \phi(t)}{h} \quad (3)$$

exists in the norm topology of \mathcal{H} for each $t \in \mathbb{R}$, and similarly for $\psi(t)$.

Prove that

$$\frac{d}{dt} \langle \phi(t), \psi(t) \rangle = \langle \frac{d\phi}{dt}(t), \psi(t) \rangle + \langle \phi(t), \frac{d\psi}{dt}(t) \rangle \quad (4)$$

Exercise 3

Let \mathcal{H} be a Hilbert space. Consider A and B bounded self-adjoint operators on \mathcal{H} . Prove that $\frac{1}{i\hbar} [A, B]$ is self adjoint.

¹We denote with \perp the condition of two subspaces of an Hilbert space \mathcal{H} of being orthogonal, i.e., V_1 is orthogonal to V_2 , or $V_1 \perp V_2$ if and only if for any $(f, g) \in V_1 \times V_2$ we have $\langle f, g \rangle = 0$.

Exercise 4

Consider a vector space V over \mathbb{C} , A, B, C linear bounded operators on V and $\alpha \in \mathbb{C}$.

- a** Prove that $[A, B + \alpha C] = [A, B] + \alpha [A, C]$.
- b** Prove that $[B, A] = -[A, B]$.
- c** Prove that $[A, BC] = [A, B]C + B[A, C]$.
- d** Prove that $[A, [B, C]] = [[A, B], C] + [B, [A, C]]$.